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Abstract

Urban road transport is an important source of local pollution and carbon emissions.

Designing effective and fair policies tackling these externalities requires understanding

who contributes to emissions today. We estimate individual transport-induced pollu-

tion footprints combining a travel demand survey from the Paris area with NOx, PM2.5

and CO2 emission factors. We find that the top 20% emitters contribute 75-85% of

emissions on a representative weekday. They combine longer distances travelled, a high

car modal share and, especially for local pollutants, a higher emission intensity of car

trips. Living in the suburbs, being a man and being employed are the most important

characteristics associated with top emissions. Among the employed, those commuting

from suburbs to suburbs, working at a factory, with atypical working hours or with a

manual, shopkeeping or top executive occupation are more likely to be top emitters.

Finally, policies targeting local pollution may be more regressive than those targeting

CO2 emissions, due to the different correlation between income and the local pollutant

vs. CO2 emission intensity of car trips.
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1 Introduction

Road transport is responsible for several well-documented environmental externalities (Parry

et al., 2007). First, it contributes to outdoor air pollution, which has been identified by the

WHO as the world’s “largest single environmental health risk”, accounting for an estimated

4.2 million deaths per year (WHO, 2014). Beside its impact on physical health, air pollution

negatively impacts mental health (Bishop et al., 2018; Braithwaite et al., 2019), the formation

of human capital (Currie et al., 2014) and productivity (Chang et al., 2019). Road transport

also contributes to greenhouse gas emissions, mostly carbon dioxide (CO2), with an increasing

contribution relative to other economic sectors in most developed countries (IEA 2019). This

trend needs to be reverted to achieve emission reductions consistent with the Paris agreement.

Yet, policy proposals aiming at increasing the cost of driving polluting cars, whether

motivated by air quality or climate mitigation concerns, are controversial. The recent Yellow

Vest movement in France revealed the low acceptability of a specific measure, the carbon

tax; but other policy instruments such as low emission zones or congestion charges have also

met opposition across Europe (Viegas, 2001; Le Parisien, 2019; Delhaes and Kersting, 2019;

Isaksen and Johansen, 2020). It is then crucial to understand who the high emitters are,

since they are the most likely to oppose these measures.

In this paper, we estimate how much individuals contribute to transport-related emis-

sions of local pollutants and CO2 in their daily travels. We do so in the context of a large

urban area, where emissions are both more detrimental to health and possibly easier to

tackle than in rural areas. On the first point, many urban areas suffer from high levels of

pollution, including in developed countries subject to relatively strict environmental regula-

tions: in Europe, France, Germany and the UK were condemned in 2018 for failing to meet

air quality standards in several cities (European Commission, 2018). On the second point,

urban areas present more alternatives to cars: the higher density makes active modes more

attractive, and public transport is more widespread (Creutzig et al., 2020). We combine

individual travel information from a large representative survey conducted in the Paris area
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with mode-specific and vehicle-specific emission factors to uncover the magnitude of inequal-

ities in local pollutant and carbon footprints, the mediating mobility patterns underlying top

emissions and the individual characteristics associated with top emitters. We focus on two

local pollutants having detrimental effects on health, nitrogen oxide (NOx) and fine particu-

late matter (PM2.5), and the main greenhouse gas, carbon dioxide (CO2). Our analysis only

includes trips made within the Paris area. Long-distance trips made by car, rail or aviation

are excluded, such that our analysis sheds light on urban and suburban mobility patterns

only.

We find strong inequalities in emissions among individuals, with the top 20% of emitters

contributing 75-85% of emissions on a representative weekday, depending on the pollutant.

Applying an exact factor decomposition analysis on emissions quintiles, we show that top

emissions result from the combination of longer distances travelled, a higher reliance on car,

and a higher emission intensity within modes. While all three channels contribute equally

to the difference in local pollutant emissions between a top and an average emitter, for CO2

the difference is mostly explained by longer distances and a high reliance on cars, and less

by differences in emission intensities. In a second step, we highlight the individual socio-

economic and locational characteristics associated with being in the top 20% of emitters,

and with each of the distance, modal share and emission intensity channels. Beside the

characteristics already well-identified in the literature, such as being employed or living far

away from the city centre, we highlight the role of gender and, for those in employment,

the role of job characteristics: having atypical working hours, working in a factory, being a

shopkeeper, manual worker or company head are associated with a higher likelihood to be a

top emitter. Finally, we show the ambivalent role of income, which is associated with higher

distances, a higher probability to use a car and a higher CO2 emission intensity of cars, but

not with a higher NOx and PM2.5 emission intensity.

Our paper contributes to several strands of the literature: first, we contribute to the lit-

erature on environmental inequalities by investigating individual contribution to transport-
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related local pollutants and CO2. On local air pollutant emissions, there is a vast literature

examining cross-country inequalities in emissions - in relation to the Environmental Kuznets

Curve hypothesis (Dinda, 2004) -, and a more limited literature examining inequalities at

the individual or household level (Levinson and O’Brien, 2018; Barnes et al., 2019). On

CO2 emissions, there is also flourishing literature looking at inequalities in individual carbon

footprint at the country or regional scale (Sager, 2019; Ivanova and Wood, 2020; Büchs and

Schnepf, 2013), or, closely linked, examining carbon tax incidence by socio-economic group

(Douenne, 2020; Cronin et al., 2018). Most of these studies estimating individual emissions

rely on input-output methodologies combined with micro-level consumer expenditure sur-

veys, which provide limited information on travel behavior (mostly the purchase of fuel and

public transport tickets and subscription) and spatial location.

Our paper is closer in spirit to studies relying on detailed travel diaries from a sample of

individuals to estimate individual emissions from transport (see for example Brand and Pre-

ston (2010); Barla et al. (2011); Ko et al. (2011); Bel and Rosell (2017); Yang et al. (2018);

Brand et al. (2021)). An important limitation of most of these studies, however, is to rely on

low sample sizes, and, often, on non-representative surveys where highly educated individuals

are over-represented. In contrast, we use a large representative survey (N=23,690), similar

to Bel and Rosell (2017) in the case of Barcelona or Ko et al. (2011) in the case of Seoul. We

add to these papers in at least two ways. First, our large sample size enables us to examine

the association between different job characteristics and top emissions for the subsample of

employed individuals, a group who emits more than the rest and has more constrained trips.

Second, having rich information on car characteristics allows us to apply different emission

factors within modes for personal vehicles, while the aforementioned papers only use differ-

ent emission factors between modes. This allows us to investigate how much differences in

emission intensity contribute to differences in total emissions across individuals, and to ex-

amine correlations between individual characteristics and the emission intensity of car trips.

Given that several popular policies directly or indirectly target the local pollution or CO2
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emission intensity of cars, it seems particularly important to understand these correlations

and examine how they vary by pollutant.

Second, to the best of our knowledge, our paper is the first to jointly examine inequalities

in the contribution to local pollutants and CO2 emissions in the context of urban mobility.

Given that local transport policies may be primarily motivated by either one or the other

concern, it seems crucial to understand to what extent global and local pollution are caused

by the same groups of individuals and the same travel behaviours. In that sense, we con-

tribute to the literature examining the trade-offs and complementarities in tackling both

CO2 and local pollution (see Ambec and Coria (2013) for theoretical insights, Durrmeyer

(2021) and Linn (2019) for empirical assessments in the transport sector). Durrmeyer (2021)

and Linn (2019) show that while effective in decreasing CO2 emissions, CO2-based vehicle

taxes are likely to increase the emission of damaging air pollutants (NOx and PM2.5), be-

cause they increase the share of diesel cars, less CO2-intensive but more intensive in NOx

and PM2.5. The reverse trade-off may exist in the case of local transport policies driven by

air pollution concerns, and low-emission zones indeed tend to be more restrictive for diesel

cars than for gasoline cars. Our results suggest that a policy targeting cars’ local pollutant

emission intensity may also have different distributional impacts from a policy targeting the

CO2 emission intensity, since we find different associations between household income and

the PM2.5 vs. CO2 emission intensity of car trips.

Finally, our paper contributes to the literature on exact decomposition analysis. Most

exact decomposition analyses using the Log-Mean-Divisia-index developed by Ang (2004,

2005) have aimed at understanding the components underlying the evolution of CO2 emis-

sions over time (for example, Wang et al. (2005); Mahony (2013)). They have been applied

to aggregate time series data at the national or regional level. We instead aim at under-

standing the factors underlying differences in emissions across groups of individuals at a

given point in time. While LMDI decompositions have been applied to cross-sectional data

at the regional level (Ang et al., 2015; Liu et al., 2017), we adapt the method to the analysis
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of individual-level micro data.

The paper is organized as follows: Section 2 presents the local context; Section 3 presents

the data and methods used; Section 4 presents the results and section 5 discusses their policy

implications and concludes.

2 Air pollution and transport emissions in the Paris

area

We consider the Paris area, which we define here as the administrative region of Ile de France

(IdF), represented on Figure 1a - the region is the first level of administrative subdivision

in France.1. The IdF region has a population of 12.2 million inhabitants and is made of

three layers: the city of Paris in the centre (red), a first layer around Paris called the

“inner suburbs”, made of three small départements (blue) - the second level of administrative

subdivision in France, and a second layer called the “outer suburbs”, made of four larger

but less dense départements (yellow).

We consider two types of transport emissions in this paper: local air pollutants contribut-

ing to ambient air pollution, and greenhouse gases contributing to climate change. Ambient

air pollution levels regularly exceed recommended and legal thresholds in the Paris area.

While concentrations of the main regulated pollutants2 have been decreasing throughout

the area over the past ten years, they remain high, especially in the city centre. Figure 1b

shows NO2 concentrations in 2015, a pollutant to which long-term exposure is associated

with increases of bronchitis in asthmatic children and reduced lung function growth (WHO,

2018). The legal threshold of 40µg/m3 is exceeded in Paris and the majority of the inner

suburbs. Furthermore, despite the improvement in air quality, air pollution is the number

1The Paris metropolitan area as defined by the French statistical institute does not include all the IdF
region; it excludes a small part of the outer suburbs. We consider the whole region because our transport
data are representative of the population from the entire region

2nitrogen dioxide NO2, ozone O3, and particulate matter PM10
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one environmental concern in the Paris area according to a 2018 survey (Airparif - IFOP,

2018), and 61% of the respondents think that air pollution has increased in the past ten

years. Regarding transport-related contribution to emissions, we consider two different local

pollutants here: NOx, a generic category of pollutants including NO2, and PM2.5. Expo-

sure to PM2.5 has detrimental effects on health and increases mortality risk in the short-

(Deryugina et al., 2019) and long-term (Lepeule et al., 2012), without evidence of a thresh-

old below which exposure would be harmless (WHO, 2018). Road traffic is responsible for a

sizeable share of local pollutant emissions in the Paris area in 2018: 53% of nitrogen oxides

(NOx) and 19% of the PM2.5. Besides, road traffic is responsible for 29% of the region’s CO2

emissions (Airparif, 2021).

Several regional and local policies have been implemented to tackle local pollution and

CO2 emissions from cars. To dampen local pollution specifically, short-term driving restric-

tions based on license plate numbers have been systematically imposed since 2014 during

pollution peaks. Long-term measures advertised by the regional authority include develop-

ing the public transport network - the Paris area is a typical monocentric city where most

public transport lines converge to the centre - , building more cycling lanes, reserving lanes

6



for buses, clean vehicles and car-pooling, as well as speed reduction on the ring road (Région

Ile de France, 2016). By far, the most ambitious policy specifically targeting air pollution

is the Low Emission Zone (LEZ) projected to be rolled-out in Paris and the surrounding

municipalities between 2017 and 2024, which should progressively ban all polluting vehicles

- defined by their age and fuel type - from the city centre. However, this policy has met

political opposition from some municipal authorities (Le Parisien, 2019). To reduce both

local air pollution and CO2 emissions from cars, the Paris metropolitan area also announced

the complete ban of diesel cars by 2024 and of gasoline cars by 2030 (Le Monde, 2018).

3 Data and methodology

3.1 The Data

Our main source of data is the 2010 wave of the EGT (Enquête générale des transports - EGT

2010-STIF-OMNIL-DRIEA), a survey conducted every 8 to 10 years in the Paris area. The

2010 wave is the laest available3 and was conducted between October 2009 and May 2010,

and between October 2010 and May 2011. The survey contains detailed information on the

transport choices of 35,175 individuals from 14,885 households4 on a given weekday5, and

many socio-economic characteristics. The sample is representative of the Paris area (=IdF

region) population as characterized in the 2008 census in terms of household size, type of

housing and individual socio-economic and demographic profiles6. The EGT is also broadly

3A new wave was planned to be carried out between 2018 and 2022. The data collection was interrupted
in late 2019 because of a large public transport strike, and was subsequently stalled due to the Covid-19
crisis

4The sampling rate at the household level is 1/330. In 2010, the Paris area had a population of 11.79
millions inhabitants

5The respondents are asked about all their trips from the day preceding the interview, which can corre-
spond to a day between Monday and Friday. We include survey day-of-week fixed effects in all our regression
analyses because more people stay at home some days of the week, especially on Mondays (because many
shops are closed) and Wednesdays (to take care of the children who have no school that day). If some types
of households are surveyed more often during some days of the week, results could be biased without these
fixed effects. Our results are almost identical without these fixed effects.

6based on 30 categories combining gender, age, socio-professional category and main occupation
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representative of the 2011 Paris area population7.

For the present analysis, we use the subsample of mobile individuals, that is, adults

having done at least one trip during the weekday (N=23,690). This represents 93.07% of

the surveyed adults. Table 1 shows descriptive statistics for this subsample8. The average

daily distance is 29 kilometres. The average self-reported travel time is 107 minutes. The

average number of trips per day is 4.3, with an average trip distance of 8.3 kilometres

and a trip duration of 29 minutes. The average distances are comparable to the national

patterns reported in the 2019 wave of the French national transport survey (SDES, 2021): in

terms of daily mobility (excluding long-distance trips), the average French person travels 26

kilometres per day and the average trip is 8.7 kilometres long9. Travel time is higher in the

Paris area than on average for France, presumably due to a higher congestion: The average

trip duration is 20 minutes in France but 29 minutes in the Paris area. Finally, the modal

shares of public transport and active modes are higher in the Paris area than the national

average, and that of car lower: the average Paris area resident makes 27% of her trips by

public transport and 33% by active mode, versus only 9% for public transport and 26% for

active mode for the average French person. She uses the car for 39% of her trips versus 63%

for the average French person. In table A.5, we compare mean observed characteristics for

the full sample and the sample of adults with at least one trip recorded. Mobile individuals

- which is our population of interest - are representative of the whole sample in terms of

locational characteristics, but they are on average more educated and richer, and are more

likely to be full-time employed.

The survey records and geolocates all the places visited by each individual during the day

with a grid size of 100 meters*100 meters. For each trip defined by an origin and destination,

the data describes each journey stage, a journey stage being defined as a single travelling

7See Table A.4, comparing average household characteristics from the EGT and from administrative
data for the year 2011

8See Table A.3 for household-level descriptive statistics on the whole sample
9The sample is slightly different because individuals not travelling during the day and individuals aged

6 to 17 are included in the national sample.
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mode10. Only the trips starting or finishing within the Paris area boundaries are geolocated.

For the 0.8% of trips starting (finishing) in the Paris area but finishing (starting) in another

region, we do not know the departure (arrival) point’s location, nor the trip distance.

We add three variables not readily available in the EGT data:

• Actual distances travelled: The EGT data only contains as-the-crow-flies distances

for each trip and journey stage. We obtained estimated actual distances based on a

shortest-path algorithm from the regional transport authority Ile de France Mobilités.

Both as-the-crow-flies and actual distances are not available for the 0.8% of trips made

outside the Paris area.

• Income quintiles: in the EGT data, household income is self-declared and interval-

coded in nine income brackets, with a non-response rate of 6%. In order to estimate the

relationship between income quintiles and contribution to emissions, we estimate the

full distribution of income using an interval regression imputation method (Royston,

2007). Since the method assumes an underlying normal model for the partially observed

imputed variable - given other predictors - and the distribution of income is usually

log-normal, we apply a log transformation to the income brackets declared in the

EGT. We then estimate the continuous income variable by including several socio-

economic factors known to be correlated with income in the interval-coded regression.11

For households with a missing income bracket, we use a predictive mean matching

imputation method (Little, 1988), using the same predictors and similarly predict

their continuous income. Finally, we transform the obtained continuous variable of

household monthly income into a variable of annual income per consumption unit,

10For example, a work commuting trip by subway including one change will include four journey stages:
the first stage is the journey by foot from home to the subway station; the second stage is the subway journey
with the first metro line, finishing at the subway station where the commuter changes lines; the third stage
is the subway journey with the second metro line, finishing at the subway station near the workplace; the
fourth stage is the journey by foot from the subway station to the workplace.

11List of predictors: age, age squared, gender, education level and socio-economic class of the household
head; socio-economic category of her partner; number of household members working full-time and number
working part-time; housing status of the household; dummy for whether the household is eligible to family
allowances based on the number and age of children, to proxy for social transfers.
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using the OECD equivalence scale. Table A.4 shows that the average income per

consumption unit obtained with this imputation is close to the average income per

consumption unit in the Paris area in 2011 obtained from administrative data. In

the regression analyses, we build quintiles of income based on this continuous income

variable.

• Rail public transport stops within a one kilometre radius: We create a binary

variable indicating whether a household lives less than one kilometer away from a rail

public transport stop. To do so, we combine geocoded information on the location of

each rail public transport stop in 2010, including subway, regional train and streetcar,

with information on households’ place of residence.

Beside the transport survey, we use emission factor data by transport mode (and by type

of vehicle for cars and two-wheelers) coming from a variety of sources, detailed in the next

section and in Appendix A.1.
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Table 1: Summary statistics - Individuals ≥18 years old with at least one trip recorded

Mean Sd N

Residence: Paris 21% 23,690

Inner suburbs 37%

Outer suburbs 42%

Education: Primary school 6% 23,636

Secondary education 39%

Higher education < 3 years 14%

Higher education ≥ 3 years 35%

Still in education 7%

SES: Farmers 0% 22,495

Manual workers 11%

Office workers 19%

Intermediate professions 19%

Traders and craftspeople 3%

Managers and executives 20%

Pensioner 20%

Other 7%

Age 45.72 16.62 23,690

Net household income (e 2010) 40,910.90 26,462.14 23,683

Net household income per consumption unit (e 2010) 24,298.50 14,725.03 23,683

Actual distance to workplace (km)* 14.77 14.35 8,374*

Nb of trips prev. day 4.32 2.40

Modal share for trips: Car 39% 23,690

Collective transportation 27%

Bicycle 2%

Two-wheeler 2%

Walking 31%

Other mode < 1%

Daily distance travelled (km) 28.88 31.60 23,690

Daily travel time (min) 107.19 76.06 23,690

Average trip distance (km) 8.26 10.53 23,444

Average trip duration (min) 29.30 24.26 23,458

Note: Source: EGT data. Observations weighted with EGT individual-level sampling weights. SES stands
for Socio-Economic Status. The eight categories follow the aggregate classification of the French Statistical
Institute. Household income is estimated with a predictive mean matching imputation method. *Actual
distance to workplace is only observed for workers making one commuting trip starting exactly at home and
finishing exactly at work during the day, hence the lower sample size.
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3.2 Methodology

Building individual measures of contribution to pollution. We estimate individual-

and trip-level contributions to local and global pollution based on the detailed information

contained in the EGT. For local pollutants, we use NOx and PM2.5. For global pollution,

we use CO2 emissions. The total emissions of pollutant P for individual i during the day

are the sum of her emissions at the trip level, with T the total number of trips made during

the day:

EP,i =
∑
t∈T

EP,i,t (1)

Emissions at the trip level EP,i,t are themselves the sum of emissions for each journey stage

j that t is made of. Note that we cannot calculate emissions for the trips starting or finishing

outside the Paris area, for which we do not have trip distances. For each individual i and

each journey stage j, we know the estimated journey distance in kilometers dj,i, the travel

mode used m, the mode-specific, or, for personal vehicles, the vehicle-specific emission factor

eP,j,i in grams per kilometre, and the number of passengers nj,i if the mode used is a private

vehicle (car or two-wheeler). For all the journey stages done with a collective transport

mode, the number of passengers is set to one, as an average occupancy rate is included

in the estimation of their emission factor. Emissions at the journey stage are simply the

product of distance and the emission factor, divided by the number of passengers:

EP,i,t =
J∑

j∈J

dj,ieP,j,i
1

nj,i

(2)

Appendix A.1 details the sources used and data processing steps to obtain emission

factors that are comparable across modes for each of the three pollutants considered. To

summarize, active modes (walking, cycling, skate-boarding, etc,) have a zero emission factor

for all three pollutants. The train and subway have a zero emission factor for NOx and
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CO2
12, but not for PM2.5, due to the emissions from train brakes. For transportation modes

with positive emission factors - buses, two-wheelers and cars for NOx and CO2, plus electric

public transport for PM2.5, we use data from different sources, described in Appendix A.1.

Emission factors can exist in two versions: the “true”, on-road emission factor, which

varies with the vehicle speed, quality of the road and driving conditions; and the type-

approval values reported by car manufacturers, subject to a maximum value under the

EU emission standards regulation. For NOx and PM2.5, we use on-road emission factors

because the discrepancy between type-approval and real-world emissions is large 13. For

PM2.5 specifically, using on-road emission factors also allows us to take into account emissions

from tyres and brakes - rather than only those from exhaust -, which represent a substantial

share of emissions (OECD, 2020). For CO2, type-approval values seem more relevant for two

reasons. First, there exist car model-specific CO2 emission factor data, which we can link

to the information on the vehicles owned by EGT households to estimate precise emission

factors varying by fuel type, age and horsepower. Second, while for local pollutants, type-

approval values are drastically underestimating real-world emissions, for CO2 the difference

between type-approval and real-world emissions is relatively small14.

Table 2 shows the emission factors obtained for each pollutant and transport mode. The

car emission factor reported in the table is the one imputed when an individual travels with

a car that she does not own. For journey stages done with a car owned by the household,

we find a large variation in emission intensity values, as illustrated in Figures A.1, A.2 and

A.3, showing emission intensity values by transport mode and pollutant15. The heterogenity

in emission intensities is the highest for NOx and for private cars, with few extremely high

12These modes embody some NOx and CO2 emissions, but given our focus on air pollution mitigation in
the Paris area, we think it is satisfying to focus on exhaust emissions only.

13Baldino et al. (2017) compare on-road and type-approval emission factors for a sample of diesel cars
registered after 2011, brought under the spotlight by the 2015 Volkswagen scandal. They report an average
factor of 4 between the type-approval and real-world NOx values.

14for the same sample of diesel cars, Baldino et al. (2017) find that on-road CO2 emissions are on average
only 30% higher than type-approval values.

15For collective transportation, these emission intensity values are equal to the emission factors reported
on table 2. For private transportation, they are defined as the emission factor divided by the number of
passengers.
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Table 2: Emission factors by mode

Unit
NOx
(mg)

PM2.5

(mg)
CO2

(g)

Type of emission value Real-world Real-world Type-approval

Walking per passenger-km 0 0 0

Cycling per passenger-km 0 0 0

Street-car per passenger-km 0 7 0

Metro per passenger-km 0 7 0

Train per passenger-km 0 7 0

Bus per passenger-km 242 5 117

Taxi per passenger-km 1,178 127 332

Car not owned by the household per vehicle-km 589 63 166

Two-wheeler not owned by the household per vehicle-km 86 21 65
.

Notes: All the assumptions are explained in Appendix A.1.

values corresponding to old light-commercial vehicles (included in the car category).

Exact factor decomposition analysis: Starting from equation (2), we re-write individ-

ual emissions in the form of an extended Kaya identity (see Wang et al. (2005); Mahony

(2013); Bigo (2019) for other examples), as the product of distance, modal share and emis-

sion intensity by mode. Note Di the total distance travelled by individual i, Sm,i the modal

share of mode m, and IP,m,i the average emission intensity of mode m used by individual

i for pollutant P (using the notations from equation 2, IP,m,i = eP,m,i
1

nm,i
). If we call dm,i

the total distance travelled by individual i with mode m and EP,m,i the total emissions of

pollutant P from using mode m, we have:

EP,i =
∑
m∈M

Di
dm,i

Di

EP,m,i

dm,i

=
∑
m∈M

DiSmiIP,m,i (3)

Given this multiplicative structure, we can use the Log Mean Divisia Index (LMDI)

developed by Ang (2004) and Ang (2005) to decompose differences in emissions into differ-

ences in distance, modal choice, and emission intensity. We group individuals by quintile

of emissions, and calculate how much each of these three components explains the observed

difference in emissions between a reference individual from the middle quintile, and reference
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individuals from quintiles 1,2, 4 and 5 of emissions. The LMDI decomposition has been orig-

inally developed to explain changes in emissions over time and this is how it has been applied

mostly in the literature. Ang et al. (2015) suggest that the LMDI is also appropriate to com-

pare emissions between countries or regions at a given point in time, and this cross-country

version has been used in some applications (Liu et al., 2017). Although the method has, to

our knowledge, not been applied to individual-level data as we do here, our decomposition

across quintiles of individuals is mathematically equivalent to the cross-country case.

For each pollutant P , we generate a reference individual by quintile of emissions Qk,

which we defines as an individual having the average distance DQk, modal share Sm,Qk, and

emission intensity Im,Qk of her quintile Qk, k = 1..516. For the reference individual of quintile

Qk, the extended Kaya equation reads:

EP,Qk =
∑
m∈M

DQkSm,QkIP,m,Qk (4)

As recommended in Ang et al. (2015), we define a benchmark individual, here the ref-

erence individual from quintile 3, to which we compare the reference individuals from each

quintile. We then apply the LMDI decomposition. The total (tot) difference in emissions

between Qk, k = 1, 2, 4, 5 and Q3 can be decomposed into the difference in the distance (D),

modal share (S) and intensity (I) components:

EP,Qk − EP,Q3 = ∆EP,Qk−Q3,tot = ∆EP,Qk−Q3,D + ∆EP,Qk−Q3,S + ∆EP,Qk−Q3,I (5)

Following Ang (2005), this can be rewritten:

EP,Qk − EP,Q3 =
∑
m∈M

wmln(
DQk

D3

) +
∑
m∈M

wmln(
Sm,Qk

Sm,3

) +
∑
m∈M

wmln(
Im,Qk

Im,3

) (6)

16this reference individual has emissions EP,i that differ from the average emissions of her quintile, given
the multiplicative form of the decomposition formula: the product of averages is not the average of the
product
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Where wm is defined as:

wm =
EP,Qk,m − EP,Q3,m

ln(EP,Qk,m)− ln(EP,Q3,m)
(7)

And EP,Qk,m are the emissions of pollutant P associated with mode m for quintile Qk.17.

Regression analysis: We investigate the individual socio-economic and demographic char-

acteristics associated with emissions in two steps: first, we examine for each pollutant the

characteristics associated with being a top emitter, which we define as being in the top

quintile (top 20%) of the emission distribution. The reason to look at this discrete outcome

- being a top emitter - rather than at the continuous emission variable is twofold: first,

emissions are fat-tailed and the normality assumption of the residuals is likely to be violated

under a standard linear model. On the other hand, the high number of zeroes makes a log-

transformation of the emission variable challenging (Bellégo et al., 2021). Second, it seems

relevant to focus on the high emitters from a policy perspective, since this group is more

likely to bear the cost of policies making emissions more costly and oppose them.

We estimate a logit model for the three pollutants NOx, PM2.5 and CO2. For pollutant

P , writing x the vector of covariates and β the vector of parameters to estimate, the model

writes:

Pr(EP,i ∈ Q5|x) = Λ(xβ) =
exp(xβ)

1 + exp(xβ)
(8)

In a second step, we seek to understand the role of the distance, modal choice and emission

intensity in mediating the association between individual characteristics and emissions. We

run separate regressions examining the relationship between individual characteristics and

distance, modal choice (as captured by the likelihood to use a car at least once in the day)

and emission intensity (as captured by the average emission intensity of car trips made during

17The modal share of bus, two-wheeler and car is 0 for the bottom quintile of NOx emissions. To be able
to apply the log formula, we apply the “Small Value” strategy suggested in Ang and Liu (2007), that is, we
replace the zero values by δ = 10−100
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the day).

For the distance regression, we estimate a log-linear model. Writing ln(y) the natural

logarithm of total distance travelled during the day, β1 the vector of parameters to estimate

and ε an error term, the model writes:

ln(y) = xβ1 + ε (9)

For the modal choice regression, we take as an outcome a binary variable equal to one

when the individual has a strictly positive car modal share, and estimate a logit model.

Writing Scar the modal share of car, and β2 the vector of parameters to estimate, the model

writes:

Pr(Scar > 0|x) = Λ(xβ2) =
exp(xβ2)

1 + exp(xβ2)
(10)

For the emission intensity regression, the outcome variable is the average emission inten-

sity of car trips, and the sample is restricted to individuals with a positive car modal share.

We estimate a linear model, and our results should be interpreted conditionally on driving

a car on that day. Writing IP,car the average emission intensity of the car trips for pollutant

P , β3 the vector of parameters to estimate, and µ an error term, we estimate the following

model for the three pollutants NOx, PM2.5 and CO2:

IP,car = xβ3 + µ (11)

We run these four regressions on two samples: the full sample of individuals, and the

sample of individuals in employment. Beside emitting more on average than non-working

individuals, individuals in employment have more constrained trips, so it seems particularly

important to understand the job characteristics associated with emissions. The characteris-

tics of interest for the full sample of individuals are location, public transport availability (as
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proxied by proximity to a rail public transport stop), car availability18, gender, household

size, household income (we define a “low-income” category for the bottom income quintile

and a “top-income” category for the top income quintile), and employment status. For the

regression on the sample of individuals in employment, the characteristics of interest are

public transport and car availability, age19, gender, household size, household income, and

the following job characteristics: type of commute flow, distance to work, type of workplace,

type of occupation, and a dummy for having atypical working hours20. In all the regressions,

we also control for survey day-specific effects with three variables: day-of-the-week fixed

effects (we do not have information on the exact survey date); a dummy variable indicating

whether the individual encountered a problem with taking transport that day (such as a car

breakdown, a public transport strike, or bad weather conditions); and a dummy variable

indicating whether the individual was on holidays or on sickness leave that day.

4 Results

4.1 How unequal are contributions to emissions?

Figure 2 illustrates the large inequalities in daily emissions at the individual level using

Lorenz curves: on a representative weekday, the top 20% of NOx emitters contribute 85%

of NOx emissions, the middle 48% contribute 15%, and the bottom 32% have a zero contri-

bution21 (figure 2a). The top 20% of PM2.5 emitters contribute 78% of PM2.5 emissions,

the middle 62% contribute 22%, and the bottom 18% have a zero contribution (figure 2b).

The top 20% of CO2 emitters contribute 75% of emissions, the middle 48% contribute 25%,

18the vehicle availability variable is defined at the individual level and concerns the reference day, it is
different from the variables of car ownership defined at the household level

19We do not control for age in the regression on all individuals because the employment status already
captures some age effects, with the distinct categories for students, employed individuals and pensioners.

20Atypical working hours are defined as going to work or coming back from work before 5am, or going to
work after 4pm.

21Only individuals with at least one trip are in the sample, so those with zero emissions are the ones
travelling only with active modes, electric collective transportation or electric car
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while 32% have a zero contribution (figure 2c). Top emitters are not exactly the same across

pollutants but the correlation is high, with a correlation coefficient between individual-level

NOx and CO2 emissions of 0.82. Inequalities of contribution to emissions at the trip level (as

defined by equation 2) are higher than at the individual level, reflecting the high dispersion

of trip distances (see Figure A.4).

The concentration of daily-mobility-induced CO2 emissions that we find is close to Bel

and Rosell (2017)’s results on Barcelona, where the top 20% of emitters contribute 74% of

CO2 emissions. We further document that the distribution of local pollutant emissions is

even more unequal than that of carbon emissions. In the next section, we investigate whether

top emitters emit more because of longer distances travel, because of a higher reliance on

high-emitting modes, because of more polluting vehicles within modes, or a combination of

these three factors.

19



0
.2

.4
.6

.8
1

C
um

ul
at

iv
e 

pr
op

or
tio

n 
of

 N
O

x 
em

is
si

on
s

0 20 40 60 80 100
population share ranked by NOx emissions

y/yb L(p)

(a) NOx emissions

0
.2

.4
.6

.8
1

C
um

ul
at

iv
e 

pr
op

or
tio

n 
of

 P
M

2.
5 

em
is

si
on

s

0 20 40 60 80 100
population share ranked by PM2.5 emissions

y/yb L(p)

(b) PM2.5 emissions

0
.2

.4
.6

.8
1

C
um

ul
at

iv
e 

pr
op

or
tio

n 
of

 C
O

2 
em

is
si

on
s

0 20 40 60 80 100
population share ranked by CO2 emissions

y/yb L(p)

(c) CO2 emissions

Figure 2: Lorenz curves for contributions to emissions at the individual level

Note: the x-axis shows the percentiles of individual-level emissions and the y-axis shows the share of total
emissions generated by all the individuals below that percentile. Observations are weighted with EGT
individual-level sampling weights. The red curve shows how the distribution would look like if everyone
contributed equally to emissions. Source: EGT data. Sample: all adults with at least one trip on the day
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4.2 What explains high emissions?

Figure 3 show the results of the LMDI decomposition for NOx, PM2.5 and CO2 emissions

(see tables A.6, A.7, A.10, A.11, A.9 and A.8 in Appendix for the components’ values

for each quintile and the LMDI Deltas, ∆EP,Qk−Q3,D, ∆EP,Qk−Q3,S, and ∆EP,Qk−Q3,I from

equation 5). For the local pollutants NOx and PM2.5, emission intensity, distance and modal

share contribute about the same way in explaining the difference between Q5 and Q3. For

example, for NOx, differences in emission intensity contribute 36%, differences in distance

34%, and differences in modal share 30%. To give an idea of the differences, individuals

from the top NOx quintile Q5 travel on average 62km a day against 26km for those in

the middle quintile Q3; they travel by car for 92% of this distance against 37% for Q3,

and have car trips emitting 794 mg/km against 300 mg/km for Q3 (see Table A.6). In

contrast, for CO2 emissions distance and modal share are more important than emission

intensity: differences in distances explain 58% of the difference in emissions between Q5 and

Q3, differences in modal share explain 36%, while differences in emission intensity explain

only 6%. To summarize, the top 20% of NOx and PM2.5 emitters are individuals combining

long distances, a high car modal share, and more polluting cars, while the top 20% of CO2

emitters combine long distances and a high car modal share, but have cars that are only

slightly more CO2 intensive than the average car.

Regarding the factors contributing to the difference between the bottom quintiles and

Q3, the main difference is the more important role of the distance component for PM2.5,

compared to NOx and CO2. This is because subway and train, which are the only transport

modes taken by 32% of the individuals, do not have a zero PM2.5 emission factor while they

have a zero NOx and CO2 emission factor. The bottom quintile for PM2.5 emissions then

includes more individuals travelling very short distances and not relying on subway and train

but only on walking (the average distance of the bottom PM2.5 quintile is only 3km, versus

16km for the bottom CO2 and NOx quintile).

The distance, modal choice and emission intensity components are of course not indepen-
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dent from each other: the correlation coefficient between distance and the car modal share

is 0.2, and the emission intensity component is by definition only calculated for modes with

a strictly positive modal share. However, conditional on having a positive car modal share,

the emission intensity of those trips is barely correlated with distance22 and with the modal

share23. Given this absence of correlation, different groups of people may be affected by

mitigation policies aiming at a reduction in cars’ emission intensity (such as vintage-based

low-emission-zones or subsidies for electric cars) compared to mitigation policies tackling dis-

tance (such as policies to increase urban density) or aiming a reduction in the car modal share

(such as public transport subsidies). This justifies investigating separately the correlation

between socio-economic characteristics and distance, modal choice and emission intensity, as

we do in the next section.

22ρdistance,NOx emission intensity = 0.05, ρdistance,PM2.5 emission intensity = 0.08 and
ρdistance,CO2 emission intensity = −0.002

23ρcar modal share,NOx emission intensity = 0.03, ρcar modal share,PM2.5 emission intensity = 0.006,
ρcar modal share,CO2 emission intensity = −0.05
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(a) NOx

(b) PM2.5 (c) CO2

Figure 3: Contribution of distance, modal choice and emission intensity to the differences in emissions, by
pollutant

Note: These graphs show, for each pollutant, the difference in emissions between the reference individuals
from quintiles 1, 2, 4 and 5 and the benchmark individual from quintile 3 (total length of the bars), decom-
posed into differences in total distance travelled, modal shares, and the emission intensity of a given mode.
The LMDI formula used is the additive decomposition (Ang, 2004), shown in equations 5 and 6.
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4.3 Who emits pollution?

4.3.1 Analysis on the sample of all individuals travelling

The first subgraph of figure 4 shows, for each pollutant outcome, the average marginal

effects of the different individual characteristics on the propensity to be in the top 20%

of emitters24 (see regression outputs in Table A.12). The three next subgraphs show the

association between these characteristics and each of the three channels distance, modal

share and emission intensity (see regression outputs in tables A.14 and A.15). All the

coefficients should be interpreted as correlations rather than causal effects: it is easy to

think of omitted variables that could influence at the same time some covariates and the

outcome variable. For example, a preference for driving is likely to decrease the propensity

to live close to a rail public transport stop and increase the propensity to use a car.

We make four observations. First, most marginal effects are close in magnitude across

the three pollutant outcomes and only few of them have opposite directions. This is logical

given the high correlation between being a top NOx, top PM2.5, and top CO2 emitter. One

exception is the income variable, which plays a different role for local pollutants and for

CO2 emissions: being in the high-income category is associated with a 2.8 percentage point

increase in the likelihood to be a top CO2 emitter, while it has no significant effect on the

likelihood to be a top NOx or PM2.5 emitter. Since both local pollutant and CO2 emissions

are the product of distance, modal choice and emission intensity, and only emission inten-

sity differ across the two types of pollutants, the correlation between income and vehicles’

emission intensity must differ across the two types of pollutant. This is indeed what we

see in the last subgraph: being in the top income quintile is associated with a lower local

pollution emission intensity of car trips but with a higher CO2 emission intensity. This is

true both before and after controlling for the type of car owned25. The positive correlation

24The omitted categories for the categorical variables present in the model are: for the place of residence,
we omit living in the inner suburbs; for gender, we omit male; for income, we take as reference the middle
60% and group individuals from the bottom quintile in the “Low-Income” category and individuals from the
top quintile in the “High-Income” category. For the activity status, we omit unemployed individuals

25The last subgraph of figure 4 shows the coefficient estimates without controlling for the type of car
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between high income and CO2 emission intensity can be explained by the fact that richer

households generally own heavier, larger and more powerful cars, attributes that correlate

positively with the CO2 emission factor.

On the other hand, being in the low-income category is associated with a higher emission

intensity of car trips across the three pollutants, which may be due to the fact that the

cars owned by poorer households are older and more often light-commercial vehicles, two

attributes positively correlated with emission intensity. This positive association somehow

contrasts previous findings from Barnes et al. (2019), where in the UK, the areas with the

highest poverty rate are the ones where the cars owned have the lowest NOx, PM and

CO2 emission factor. The difference between our results may be due to differences in the

context considered - the Paris area vs. the entire UK - , in the data scope - car trips from

daily mobility vs. all car trips -, in the type of relationship examined - partial correlation

holding other characteristics constant in our case vs. bivariate analysis in the case of Barnes

et al. (2019) - or in the methodology used to estimate emission intensity - where we take

into account cars’ occupancy rate and have a specific emission factor for light-commercial

vehicles, while Barnes et al. (2019) do not. Note that in our case, the association fades out

for NOx and PM2.5 when the type of car owned by a household is controlled for (see columns

(2) and (4) of table A.15).

A second observation is that the associations between individual characteristics and top

emissions hide mediating channels sometimes having conflicting effects. For example, the

null association between low-income and top emissions hides a negative association between

low-income and distance, and car use, combined with a positive association with the emission

intensity of car trips. Similarly, living in central Paris is associated with shorter distances

travelled and a lower propensity to use a car, but for those who do, a much higher CO2

emission intensity, while living in the outer suburbs is associated with longer distances and a

higher propensity to use a car but a lower CO2 emission intensity. Given these associations

owned. Columns (2), (4) and (6) of table A.15 show coefficient estimates after controlling for car type and
fuel type.
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going in opposite directions depending on the channel considered, a policy aiming at reducing

distances travelled will not affect the same group of individuals as one aiming at reducing the

emission intensity of cars. The only characteristics for which the association is significant and

goes in the same direction is being employed, which is positively correlated with distance,

car modal share and emission intensity.

Our third observation concerns the type of characteristics associated with top emissions.

Living in the far suburbs, being employed, being a man and having a motorized vehicle

available are associated with a higher likelihood to be a top emitter. Living in central

Paris, being unemployed or inactive, being a woman and living within one kilometre of a

rail public transport stop are associated with a lower likelihood to be a top emitter. The

role of employment status, income or household location is consistent with previous findings

focussing on carbon emissions at the household or individual level (Nicolas and David, 2009;

Barla et al., 2011; Brand et al., 2013; Bel and Rosell, 2017; Blaudin de Thé et al., 2021). We

also document an important role for gender, with women having a lower likelihood to be top

emitters than men. This dimension has been less frequently investigated, because analysing

gender differences in emissions requires having individual-level rather than household-level

data. The negative association between being a woman and emissions had been reported

by Brand et al. (2013) in the case of motorized passenger travel specifically, and by Bel and

Rosell (2017) and Barla et al. (2011) in the case of daily mobility in Barcelona and Quebec

city respectively. In contrast, Brand and Preston (2010) found that being a woman was not

significantly associated with total CO2 emissions from transport.

Our analysis of the distance, modal share and emission intensity channels enables us

to better understand the underlying mechanisms of this gender difference in the context

of Paris: first, conditional on the other covariates, being a woman is associated with 25%

shorter distances than being a man. This result can be linked to the urban planning literature

emphasizing gender differences in distances travelled (MacDonald, 2016) and, in the case of

employed women, to the economic literature finding that women have a shorter maximum
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acceptable commute than men (Le Barbanchon et al., 2021). A second reason is that being

a woman is associated with a lower emission intensity of car trips for all pollutants, due to

the combination of a higher occupancy rate and a lower emission factor of the cars used. In

contrast, the result does not seem driven by gender differences in car use, conditional on the

characteristics controlled for. Indeed, once we control for car availability - which we do in

all the regressions presented on figure 4 - women are not less likely to use a car than men.

They are even more likely to do so in the subsample of employed individuals (see column

(2) of table A.17). Had we not controlled for car availability though, being a woman would

have been even more negatively correlated with emissions, since only 60% of women have a

car available on the survey day, against 75% of men.

Finally, even after including a rich set of socio-economic, spatial and demographic factors

as well as controls relative to the survey day, the McFadden’s pseudo R-squared of the top

emitter regression and the R-squared of the distance and emission intensity regressions are

quite low, never exceeding 0.2 (see Tables A.12, A.14 and A.15). This observation suggests

an important role for other, potentially unobserved factors in explaining the variation in

emissions across individuals, and can be linked to previous findings from similar analyses

in other contexts (Brand and Boardman, 2008; Ko et al., 2011; Bel and Rosell, 2017), as

well as findings in the tax incidence literature reporting a vast heterogeneity in carbon tax

incidence, poorly explained by observable household characteristics (Cronin et al., 2018;

Douenne, 2020).

To understand the difference between the partial correlations captured in our multivariate

regressions and the unconditional correlations between each characteristic and the outcome,

figure A.5 shows the coefficient estimates for the same characteristic and outcomes as in

figure 4, but based on regressions with only one individual characteristic of interest and

no other covariate, except for the survey-day specific variables. We call this second set

of coefficient estimates the “unconditional correlations”, although we still control for the

survey-day specific variables. The results indicate three main differences between the partial
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and unconditional correlations: i)being a low-income individual is strongly associated with

a lower propensity to be a top emitter and a lower propensity to use a car, when no other

characteristics are controlled for; ii)being a woman is associated with a lower propensity

to use a car, while there was no significant difference in car use between men and women

when other characteristics were controlled for. This probably reflects the negative correlation

between being a woman and having a car available; iii)being employed is associated with a

higher propensity to use a car while being a student is associated with a lower probability

while there were no significant effect when other variables were controlled for. This probably

also reflects the positive (negative) correlation between being employed (student) and having

a car available (and is consistent with the sign of the coefficient when having a car available

is not controlled for, as in the second column of table A.14).
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Figure 4: Regression coefficients of the top emitter, distance, car use and cars’ emission intensity regressions,
all individuals sample

Notes: from left to right: selected x covariates are listed on the left, by category. Omitted categories
for categorical variables: Location: inner suburbs; Gender: male; Employment status: unemployed. All
the regression models also include survey-day fixed effects and control variables for problems with taking
transport, being on leave or on sickness leave on the survey day. Standard errors are clustered at the
household level. The first panel shows the average marginal effect of each characteristic on the likelihood
to be among the top 20% of NOx (in light blue), PM2.5 (dark blue) and CO2 (red) emitters, expressed in
percentage points. The second panel shows the percent change in the total daily distance travelled associated
with each characteristic, in %. We have transformed the β coefficients from the log-linear model to be able to
interpret them as percent changes, knowing that a 1-unit change in x corresponds to an increase in distance

by (eβ̂ − 1) ∗ 100. The third panel shows the average marginal effect of each characteristic on the likelihood
to use the car at least once during the day, expressed in percentage points. The fourth panel shows the
change in the NOx (in light blue), PM2.5 (dark blue) and CO2 (red) emission intensity of the car trips made
by the individual, expressed in standard deviation units, associated with each characteristic. Regressions
are unweighted.
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4.3.2 Analysis on the subsample of individuals in employment

We next examine the association between employment characteristics and top emissions.

The first subgraph of figure 5 shows, for each pollutant, the average marginal effects of

selected characteristics on the propensity to be in the top 20% of the emitters for the sub-

sample of individuals in employment26 (see regression outputs in Table A.13). The three

next subgraphs show the association between these characteristics and the three channels of

distance, modal share and emission intensity (see regression outputs in tables A.16,A.17 and

A.18).

Some observations made based on the analysis of the entire sample still hold: the cor-

relations between employment characteristics and being a top emitter are close in direction

and magnitude across the three pollutants. Furthermore, many characteristics correlate

positively with one channel and negatively with another. For example, compared to living

in the suburbs and working in Paris, living and working in the suburbs is associated with

shorter distances travelled but a higher propensity to use the car, which results in a higher

propensity to be a top emitter. On the other hand, compared to having an intermediate pro-

fession, being a craftsworker is associated with shorter distances travelled but a much higher

emission intensity of car trips (probably due to the more widespread use of light-commercial

vehicles), which results in a null association with being a top emitter. Finally, although the

explanatory power of the different characteristics is slightly higher than for the analysis of

the full sample, it remains limited.

We highlight some associations between job characteristics and the likelihood to be a top

emitter which, to the best of our knowledge, had not been documented before. Compared

to commutes between the suburbs and Paris centre, having to commute from suburbs to

suburbs is associated with a 13 to 17 percentage point increase in the likelihood to be a

26The omitted reference categories for employment characteristics are: for the place of residence combined
with the place of work: individuals living in the suburbs and working in Paris; for the workplace type: working
in an office; for socio-professional category: intermediate professions, which include public sector jobs such
as school teacher or nurse and private sector jobs such as customer service managers.
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top emitter, depending on the pollutant. This was expected and probably reflects the low

density of the radial Parisian public transport network in the suburbs, which constrains car

use for this commute type.

Having atypical working hours - which is the case for 2.6% of employed individuals in

our sample - is associated with an increase by around 5 percentage points in the propensity

to be a top emitter across the different pollutant outcomes. The result is driven by a higher

propensity to use a car, likely reflecting the lower availability of public transport at night

or very early in the morning. Compared to working in an office, working in a factory is

also associated with an increase by around 5 percentage points in the likelihood to be a top

emitter, also driven by a higher likelihood to use a car. This may reflect the relative poor

public transport accessibility of industrial zones, compared to areas with a high density of

office space.

Concerning the type of occupation, being a technician, qualified manual worker, shop-

keeper or company head is associated with a higher likelihood to be a top emitter of local

pollutants, compared to having an intermediate profession. Being a technician, shopkeeper

or company head is associated with a higher likelihood to be a top CO2 emitter. These

associations are driven by the higher propensity to use a car for all these occupations. Being

a technician or company head is also associated with longer distances travelled. Being a

manual worker or shopkeeper is also associated with a higher emission intensity of car trips,

maybe partly due to a more widespread use of light-commercial vehicles for these professions.

That some professional categories seem highly reliant on car could play a role in the po-

litical economy of opposition to policies regulating car use. We find a partial overlap between

the occupations associated with top emissions and the occupations overrepresented in the

Yellow Vest movement, a highly publicized wave of protests that took place in France in 2018

and 2019, initially as a reaction against the increase in fuel costs induced by the planned in-

crease in the carbon tax. According to a face-to-face survey carried out on the entire French
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territory (N=863)27 (André et al., 2019), seven occupations were over-represented during

Yellow Vest protests on roundabouts: craftsworkers, qualified manual workers, farmers and

public sector office clerks were overrepresented among men compared to their share in the

labour force, and shopkeepers, nurses and personal domestic service workers were overrep-

resented among women. Of these, four are associated with a higher likelihood to be a top

emitter or/and to use a car in our analysis: craftsworkers, qualified manual workers, shop-

keepers and farmers28. Their participation to the Yellow Vest Movement may be influenced

by an objectively higher carbon tax incidence, or at least the perception of a high reliance on

car. The three remaining categories are not associated with higher emissions in our analysis

focused on the Paris area: nurses and public sector office clerks are part of the reference cat-

egory or not significantly different from it regarding emissions and car use; workers from the

Personal Domestic Service sector are associated with a significantly lower likelihood to be top

emitters, due to a combination of much shorter distances travelled and a lower propensity

to use a car. Several reasons may underpin the over-representation of these three categories

in the nationwide Yellow Vest movement: they may be associated with higher emissions in

other French regions, characterized by a lower density of public transport compared to the

Paris area; they may be more affected by fuel cost increases despite having lower emissions

than other categories, due to their relatively low income levels; or their participation may be

motivated by the other reasons put forward in the sociological literature on the movement

(such as claims on social and fiscal justice or occupation-specific claims, see André et al.

(2019) for a summary of these reasons).

Like for the analysis of the full sample, the coefficient estimates reported in figure 5 reflect

partial correlations. They can be compared to those obtained in figure A.6 when only the

27Out of 1,333 survey answers collected on the roundabouts where Yellow vests gathered and during
demonstrations, the occupation could be retrieved for 883 individuals. Although the sample was not ran-
domly chosen, several techniques were deployed to try and reach a representative sample of Yellow Vest
participants, such as varying survey times or randomly selecting participants at different locations during
demonstrations. The response rate was high at 87%.

28included in the shopkeeper category in our analysis, given the low sample size of this category in the
Paris area
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individual characteristic of interest and the survey-day specific variables are included, and

no other covariate. The main difference is that working in a factory as opposed to an office,

and being a qualified manual worker, technician, crafts worker or company head is more

clearly associated with a higher propensity to be a top emitter when other characteristics

are not controlled for.
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Figure 5: Regression coefficients of the top emitter, distance, car use and cars’ emission intensity regressions,
individuals in employment sample

Notes: from left to right: selected X covariates are listed on the left, by category. Omitted categories for
the categorical variables: Commute type: Suburbs => Paris; Workplace type: Work in office; Occupation:
Intermediate professions; Gender: male. All the regression models also include survey-day fixed effects and
control variables for age, age squared, household size, problems with taking transport, being on leave or on
sickness leave on the survey day, which coefficients are not included. Standard errors are clustered at the
household level. The first panel shows the average marginal effect of each characteristic on the likelihood
to be among the top 20% of NOx (in light blue), PM2.5 (dark blue) and CO2 (red) emitters, expressed in
percentage points. The second panel shows the percent change in the total daily distance travelled associated
with each characteristic, in %. The estimated coefficients from a log-linear model are that a 1-unit change

in X corresponds to an increase in Y by (eβ̂ − 1) ∗ 100, so we have transformed the obtained coefficients to
be able to interpret them as percent changes. The third panel shows the average marginal effect of each
characteristic on the likelihood to use the car at least once during the day, expressed in percentage points.
The fourth panel shows the change in the NOx (in light blue), PM2.5 (dark blue) and CO2 (red) emission
intensity of the car trips made by the individual, expressed in standard deviation units, associated with each
characteristic. Regressions are unweighted.
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5 Policy implications and conclusion

Inequalities in contribution to transport-related emissions are large in the Paris area, both for

carbon and local pollutant emissions. What are the implications of such a high concentration

in emissions? First, policies tackling daily mobility emissions may represent a large cost for

a small number of individuals, while leaving the majority of individuals unaffected. How

much the top emitters are car-dependent and whether they have low-emission alternatives is

crucial to estimate the distributional impacts of these policies, and more research is needed

to characterize the potential to substitute away from high-emission trips. Second, policy-

makers may want to target top emitters specifically. Yet, our regression analysis suggests

that such targeting may be challenging, because top emitters are quite a heterogeneous

group. Interestingly, although the role of income is at the heart of many policy debates and

central to assess the distributional impacts of mitigation policies, we find that in the context

of the Paris area, it is only poorly correlated with emissions once other characteristics are

accounted for.

Since top emitters combine large distances, a high car modal share and a high emission

intensity of car trips, relevant measures to tackle emissions may include the three types

of policies included in the Avoid-Shift-Improve framework (Creutzig et al., 2018): that is,

policies aiming at reducing distances, at a modal shift, or at a decrease in the emission

intensity of car trips. But these policies are expected to affect different groups of individuals,

given the different characteristics associated with distance, car use, and the emission intensity

of car trips. The mechanisms put in place to compensate the affected groups and avoid

fairness issues should therefore be tailored to each policy type. For example, given the

positive association between low-income and pollution intensity and the negative association

between low-income and distance and low-income and car use, a policy banning the most

pollution-intensive cars with no regard for the number of kilometres driven could be socially

unfair: it would affect low-income individuals with a pollution-intensive car but driving only

few kilometres, but not high-income individuals having a less pollution-intensive car but
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driving more kilometres with it, and having higher emissions overall.

Furthermore, policies motivated by air quality goals may have different distributional

effects from those motivated by climate goals, because low-income people have more pollution

intensive cars across all pollutant types while high-income people have cars with a lower

local pollutant intensity but a significantly higher CO2 emission intensity. As a consequence,

policies based on the local pollution intensity of vehicles, such as Low-emission zones, could

be more regressive than policies regulating the CO2 emission intensity of vehicles, such

as CO2 emission standards. More research is needed to compare the actual distributional

impacts of the two types of policies.

A caveat to our inequality calculations is that we only take into account emissions on

weekdays. Weekday inequalities seem relevant to analyse air pollution mitigation in the

Paris area, because ambient pollution tends to be higher on weekdays, where car traffic

and economic activity are higher. In contrast, estimating total transport-induced carbon

footprints requires examining long-distance trips and weekends as well: residents from the

city centre tend to take the plane more often and emit more during their long-distance trips,

such that their lower carbon footprint on weekdays may be offset by a higher carbon footprint

the rest of the time (Pottier et al., 2020).

Although we use data from 2010, we think that our results are still relevant to explain

today’s distribution of emissions in Paris. Preliminary results from the new wave of the

EGT suvey (planned to be carried out between 2018 and 2022, but currently stalled due

to the Covid-19 crisis) suggest that the average number of trips, time and distances spent

travelling have not changed since 2010 (Omnil-Ile de France Mobilites, 2019). The average

modal share changed only slightly, with a small decrease in car use (from 37.8% of the trips

in 2010 to 34.4% in 2018), compensated by an increase in active transportation modes and

collective transportation.
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We thank Louis-Gaëtan Giraudet, Francois Bareille, Francois Libois, Ulrich Wagner, Laure

de Preux, Olivier Chanel, Mouez Fodha, Nicolas Taconet, an anonymous referee from FAERE,

two anonymous referees, seminar participants at CIRED and AgroParisTech, and partici-

pants to the AFSE, Mannheim Energy, EAERE and LAGV conferences, for helpful comments

and discussion; we thank Olivier Perrussel from Airparif for his advice on emissions estima-

tion, and Olivier Mahieu from Ile de France Mobilités for providing estimated distance data.

Marion Leroutier thanks ANR for the support of the EUR grant ANR-17-EURE-0001, and

the Mistra Foundation for financial support.

Data and code availability

The codes used for the analysis are publicly available on the following Open Science Frame-

work page: https://osf.io/pnyzk/. Some of the data we use have a restricted access,

such that we are not able to make the data public. The Readme document of the OSF page

explains how to access the raw data.

37

https://osf.io/pnyzk/


References
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André, A., Bedock, C., Bendali, Z., Bernard De Raymond, A., Beurier, A.-G., Blavier, P.,

Bonin, L., Courty, A., Della Sudda, M., Delozière, G., Dondeyne, C., Elalaoui, C., Flipo,

F., Frémont, C., Gaborit, M., Girardin, A., Grémion, T., Guillemin, P., Havard, M.,
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SDES (2021). Résultats détaillés de l’enquête mobilité des personnes 2019.

Viegas, J. M. (2001). Making urban road pricing acceptable and effective: searching for

quality and equity in urban mobility. Transport Policy, 8(4):289–294.

Wang, C., Chen, J., and Zou, J. (2005). Decomposition of energy-related CO2 emission in

China: 1957–2000. Energy, 30(1):73–83.

WHO (2014). 7 million premature deaths annually linked to air pollution.

WHO (2018). Ambient (outdoor) air pollution.

43



Yang, Y., Wang, C., and Liu, W. (2018). Urban daily travel carbon emissions accounting

and mitigation potential analysis using surveyed individual data. Journal of Cleaner

Production, 192:821–834.

44



A Appendix

A.1 Assumptions on NOx, PM2.5 and CO2 emissions by transport

mode

For “polluting” modes (buses, cars, two-wheelers), the emission factor eP,m comes from

different sources.

Buses For buses, the NOx and PM2.5 emission factors per passenger are derived from the

local air quality agency’s emission calculator29. They give an emission factor of 180mg/km

for an average bus in 2017. The average bus in France is 7.7 years old (Source: Observatoire

de la mobilité), so the value for 2017 is for buses registered in 2009 on average. Assuming

that the age of the fleet was the same in 2010, the average bus taken by the surveyed

individuals in 2010 had been registered in 2002. We adjust for the difference in the years

of the data by multiplying the Airparif bus emission factor for 2017 by the ratio of NOx

and PM2.5 emission factors for cars registered in 2002 compared to 2010, assuming that the

improvement in emission factors was similar for buses and for cars over the period.

The CO2 emission factor per passenger is derived from national values given in Ministère

de la Transition écologique et solidaire (2018) and scaled down to adjust for the higher

average number of passengers in the Paris area compared to other regions. The initial value

assumes 11 passengers by bus on average. Traffic data from the regional transport authority

give an average of 14 passengers by bus in Ile de France, so we multiply the initial factor by

11/14.

29http://www.airparif.fr/calculateur-emissions/. Although the value given for particulate matter indicate
a value in particulate matter of size below 10 microns (PM10), most particles from engine combustion are
actually smaller than 2.5µm: Karjalainen et al. (2014) mention that most exhaust particles from gasoline
direct injection engines are around 0.1µm;California Air Resources Board (2021) mention that more than 90%
of diesel particulate matter is less than 1µm in diameter. The EMEP/EEA Copert methodology from which
Airparif emission factors are calculated also assumes that all PM from exhaust are PM2.5 (Ntziachristos and
Zissis, 2020). A personal communication with the agency confirms that we can interpret the PM10 emission
factors as PM2.5
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Table A.1: Characteristics used to estimate vehicles’ emission factors

Vehicle characteristic
Car

NOx and PM2.5
Car
CO2

Two-wheeler2
NOx and PM2.5

Two-wheeler2
CO2

Source of emission factor data Airparif Ademe Airparif Barbusse (2005)

Type of car/two-wheeler X X X

Fuel type X X X

Year of first registration X X X X

Horsepower X

Cars and two-wheelers owned by the household For two-wheelers and cars, the

vehicle used is owned by the household in 89% of the cases. We estimate the NOx, PM2.5

and CO2 emission factors of these vehicles based on a mapping between emission factor data

and the vehicle characteristics reported in the EGT survey: type of vehicle, fuel type, age

and horsepower. The number of characteristics that can be used to estimate emissions is

different for cars and two-wheelers, and for local pollutants and CO2. The source of emission

factor data and type of information used from the EGT survey to match vehicles from the

survey to an emission factor are summarized in table A.1.

For cars, we use the NOx and PM2.5 emission factors from the local air quality agency’s

(Airparif) emission calculator by type of fuel and date of registration of the car. The average

speed, cold starts and horsepower of vehicles circulating in the Paris area are included as

common parameters entering the calculation of emission factors for all fuel types and dates

of registration. Regarding fuel type, the calculator distinguishes between diesel, gasoline,

and electric cars. We assign LPG cars from the survey the same emission factor as a gasoline

car from the same year. We assign hybrid cars from the survey the same emission factor as

an electric car from the same year (this may underestimate emissions from hybrid cars, but

they represent only 0.3% of the cars owned by households). The calculator does not have

specific values for light-commercial vehicles. For these car types declared by the household,

we proceed as follows: we take the emission factors for LCVs and cars from a different source,

the Ominea database edited by a environmental agency called Citepa and giving reference

2



values for emission factors for different economic sectors30. We calculate the ratio of LCVs

to car emission factors according to that source for each type of car and LCV defined by

their fuel type and registration year (and taking the value fo the “urban driving conditions”

rather than “highway” or “rural”). We then multiply the NOx and PM2.5 emission factors

given for cars in the Airparif calculator by the OMINEA ratio, and obtain NOx and PM2.5

emission factors respecting the relative difference of LCVs vs cars given in the OMINEA

database. Particulate matter emissions from tyres and brakes are not taken into account in

the OMINEA data, so we are assuming that the ratio of PM2.5 emission factors for LDVs

over cars is the same for exhaust emissions and emissions from brakes and tyres. Both the

local air quality agency’s calculator and the OMINEA data rely on Copert, the EU vehicle

emissions calculator (see EMEP/EEA (2018)).

For CO2, we use data from the French Energy Agency (Ademe), which provides emission

factors for all car models from 2001 to 2015. We build categories of car models defined by the

same information as the one we have on the cars owned by households in the EGT data: year,

fuel type (gasoline/petroleum/hybrid/electric/LPG), and administrative horsepower. Then,

we calculate for each category the average CO2 emission factor from the Ademe dataset,

weighted by national-level market shares by brand31. We allocate to each car type from the

EGT data the CO2 emission factor from Ademe for the same car category. When the car

owned by the household is older than 2001, we rely on data provided by Ademe32 giving

average emission factors of cars sold in France by fuel type, for the years 1995-2018. We

estimate emission factors for the period before 1995 by applying the same annual trend for

emissions as for the 1995-2000 period. For electric cars, we assign a zero emission factor.

The Ademe data reports emission factors for commercial vehicles only. For light-commercial

vehicles owned by the household, we use the estimations given in CGDD (2011).

For two-wheelers, we use the NOx and PM2.5 emission factors from the local air quality

30https://www.citepa.org/fr/ominea/
31we take the average of the registration market shares over the years 2000, 2005 and 2010 obtained from

the French car manufacturer’s association CFCA.
32http://carlabelling.ademe.fr/chiffrescles/r/evolutionTauxCo2
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agency’s emission calculator, scaled up to reflect 2010 values rather than 2019 ones. We

apply the CO2 emission factors from Barbusse (2005), which are differentiated by fuel type

and by type of two-wheeler. The study dates back 2005 and the emissions are calculated

for motorcycles first registered between 2003 and 2005. But this is a relatively good proxy

for the median emission factor of the motorcycles owned by EGT households, which median

first registration date is 2005. This single emission factor does not allow to reflect the

heterogeneity in the registration year (from 1951 to 2011), but we do not think it is too

much an issue given the low modal share of two-wheelers (< 1%).

Taxis and cars and two-wheelers not owned by the household When the vehicle

used is a car not owned by the household or is a taxi, we impute the NOx and PM2.5

emission factors of a 2008 diesel car (in 2010 most taxis were diesel vehicles33). We impute

the CO2 emission factor of a 2008 diesel car of 7 hp. We take values for recent vehicles

because vehicles not owned by the household are likely to be company cars, which are often

relatively new. For taxis, we multiply the emission factor by two to account for the fares

driven without passengers, following the recommendations of Ministère de la Transition

écologique et solidaire (2018). When the vehicle used is a two-wheeler not owned by the

household, we impute the NOx and PM2.5 emission factors of a Euro 3 two-wheeler from the

Airparif calculator, and the CO2 emission factor from a scooter. Table A.2 shows the unique

emission factor obtained for buses, taxis, cars and two-wheelers not owned by the household

(here assuming one passenger per vehicle).

33https://www.auto-moto.com/actualite/environnement/faut-il-interdire-les-taxis-diesels-la-question-
qui-fache-49587.html
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Table A.2: Emission factors for private vehicles not owned by the household

Transport mode Unit
NOx
(mg)

PM2.5

(mg)
CO2

(g)

Taxi per passenger-km 1,178 127 332

Car not owned by the household per vehicle-km 589 63 166

Two-wheeler not owned by the household per vehicle-km 86 21 65

Note: Authors’ calculations from Airparif, OMINEA,Ministère de la Transition écologique et solidaire (2018),
Copert, Ademe

0

2,000

4,000

6,000

8,000

10,000

12,000

14,000

N
O

x 
co

nt
rib

ut
io

n,
 m

g/
km

Bus

Two-w
he

ele
r

Car 
se

ve
ral

Car 
alo

ne Tax
i

Figure A.1: Distribution of NOx emissions per passenger, by transportation mode

Note: The box plots show the distribution of NOx emissions across journey stages for each mode. Call Q1
the 25th percentile, Q3 the 75th percentile, and IQR the interquartile range. The bar in each box shows the
median value, the lower and upper hinges of the box respectively show Q1 and Q3, and the lower and upper
lines show the lower and upper adjacent values defined at Q1− 1.5× IQR for the lower adjacent value, and
Q3 + 1.5× IQR for the upper adjacent value.
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Figure A.2: Distribution of PM2.5 emissions per passenger, by transportation mode

Note: The box plots show the distribution of PM2.5 emissions across journey stages for each mode. Call Q1
the 25th percentile, Q3 the 75th percentile, and IQR the interquartile range. The bar in each box shows the
median value, the lower and upper hinges of the box respectively show Q1 and Q3, and the lower and upper
lines show the lower and upper adjacent values defined at Q1− 1.5× IQR for the lower adjacent value, and
Q3 + 1.5× IQR for the upper adjacent value.
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Figure A.3: Distribution of CO2 emissions per passenger, by transportation mode

Note: The box plots show the distribution of CO2 emissions across journey stages for each mode. Call Q1
the 25th percentile, Q3 the 75th percentile, and IQR the interquartile range. The bar in each box shows the
median value, the lower and upper hinges of the box respectively show Q1 and Q3, and the lower and upper
lines show the lower and upper adjacent values defined at Q1− 1.5× IQR for the lower adjacent value, and
Q3 + 1.5× IQR for the upper adjacent value.
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A.2 Additional Tables and figures

Table A.3: EGT-Descriptive statistics at the household level

Mean Sd

Nb. household members 2.33 1.38

Residence: Paris 23%

inner suburbs 37%

outer suburbs 0.40

Housing: Social housing 23%

Private tenants 23%

Home-owners 51%

Other housing status 3%

Age, person of reference 49.58 15.98

Estimated Net income 37,634.45 24,986.45

Estimated Net income per consumption unit 24,796.51 14,670.22

Observations 14,882

Note: Source: EGT data. Observations weighted with EGT household-level sampling weights

8



Table A.4: Balance between EGT survey data and administrative data on selected household characteristics

EGT Administrative data

Nb. household members 2.33 2.48

(1.38) (1.68)

Residence: Share living in Paris 23% 22%

Share living in the inner suburbs 37% 37%

Share living in the outer suburbs (%) 0.40% 41%

Share living in Social housing (%) 23% 22%

Housing: Share of private tenants 23% 26%

Share of home-owners 51% 0.49%

Share of other housing status 3% 3%

Age, person of reference 49.58 52.04

(15.98) (17.10)

Net income per consumption unit, Filocom equivalence scale* 24,655.83** 25,969.40***

(14,640.12) (85,486.92)

Observations 14,882 4,830,037

Note: EGT observations weighted with household-level sampling weights. Source for the administrative
data: Filocom data for 2011, an exhaustive census of housing units by January 1st 2011. *Both income data
are based on the same equivalence scale as the one used in Filocom: the number of consumption units is the
number of consumption units based on the OECD equivalence scale, plus 0.2 if the household is a single-
parent family. **The income variable from EGT has been imputed using an interval regression imputation
method. ***The income variable from Filocom comes from fiscal sources and does not include non-taxable
income sources such as housing or family benefits.
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Table A.5: Balancing test comparing the subsample of individuals with one trip recorded and the full sample

1 2 3

Individuals travelling Full sample (1)-(2)

Residence: Share living in Paris 0.143 0.140 0.00340

(0.350) (0.347)

Share living in the inner suburbs 0.366 0.365 0.00107

(0.482) (0.482)

Share living in the outer suburbs 0.490 0.495 -0.00447

(0.500) (0.500)

Age, person of reference 45.20 45.69 -0.496∗∗∗

(16.21) (16.64)

Education: Primary school 0.0514 0.0588 -0.00735∗∗∗

(0.221) (0.235)

Secondary education 0.393 0.400 -0.00725

(0.488) (0.490)

Higher education ≤ 3 years 0.152 0.149 0.00248

(0.359) (0.356)

Higher education > 3 years 0.337 0.326 0.0104∗

(0.473) (0.469)

Still in education 0.0671 0.0654 0.00177

(0.250) (0.247)

Socioprofessional category: Farmers 0.000756 0.000711 0.0000449

(0.0275) (0.0267)

Manual workers 0.105 0.104 0.00102

(0.307) (0.306)

Office workers 0.191 0.192 -0.000486

(0.393) (0.394)

Intermediate professions 0.220 0.214 0.00628

(0.414) (0.410)

Traders and craftspeople 0.0200 0.0198 0.000140

(0.140) (0.139)

Managers and executives 0.197 0.190 0.00723∗

(0.398) (0.392)

Pensioner 0.198 0.213 -0.0155∗∗∗

(0.398) (0.410)

Other 0.0681 0.0669 0.00124

(0.252) (0.250)

Activity status: Pupil/Student 0.0652 0.0633 0.00192

(0.247) (0.244)

Part-time or full-time employed 0.648 0.624 0.0241∗∗∗

(0.478) (0.484)

Unemployed 0.0532 0.0578 -0.00454∗

(0.224) (0.233)

Other inactive 0.224 0.242 -0.0185∗∗∗

(0.417) (0.429)

Pensioner 0.00985 0.0128 -0.00298∗∗

(0.0988) (0.113)

Estimated Net income 40,728.2 40,129.2 599.1∗∗

(25,635.0) (25,359.4)

Estimated Net income per consumption unit 24,176.0 23,832.1 343.8∗∗

(14,325.6) (14,241.0)

Distance to workplace (km) 11.78 11.79 -0.0172

(11.99) (12.02)

Observations 23690 25453

mean coefficients; sd in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001 10
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Figure A.4: Lorenz curve, trip level

Note: the x-axis shows the percentiles of trip-level emissions and the y-axis shows the share of total emissions
generated by all the trips below that percentile. Observations are weighted with EGT individual-level
sampling weights. The red curve shows how the distribution would look like if everyone contributed equally
to emissions. Source: EGT data. Sample: all trips made by adults.
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Table A.6: Extended Kaya components by quintile of NOx emissions

NOx (mg) Dist. (km) Modal share (%) Emission Intensity (mg/km)

Bus
Two-

Wheeler Car Bus
Two-

Wheeler Car

ENOx,Qk DQk Sbus,Qk Stw,Qk Scar,Qk INOx,bus,Qk INOx,tw,Qk INOx,car,Qk

Q1 2.8 15.9 0.000 0.000 0.00 242 NA* NA*

Q2 1,763 22.5 0.083 0.018 0.291 242 93.3 193.8

Q3 4,151 25.7 0.187 0.036 0.373 242 103.5 302.1

Q4 11,310 31.5 0.105 0.032 0.676 242 122.6 487.5

Q5 45,520 62.3 0.017 0.005 0.918 242 129.0 790.7

*The modal share of these two modes is zero. In practice in the calculation of the LMDI, the same emission
intensity of cars and two-wheelers as for Q3 has been imputed to Q1, such that these sub-components of
modal share receive a 0 contribution to the difference compared to Q3.
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Table A.7: LMDI decomposition on NOx emissions at the individual level

NOx (mg) Diff vs Q3 (mg)
Distance

component(mg)
Modal share

component(mg)
Emission intensity
component(mg)

ENOx,Qk ∆ENOx,Q3,Qk,tot ∆ENOx,Q3,Qk,D ∆ENOx,Q3,Qk,S ∆ENOx,Q3,Qk,I

Q1 2.8 -3,975 -212 -3,763 0.0

(5%) (95%) (0%)

Q2 1,763 -2,388 -364 -1,141 -883

(15%) (48%) (37%)

Q3 4,151 0 - - -

- - -

Q4 11,310 7,159 1,424 2,910 2,825

(20%) (41%) (39%)

Q5 45,520 41,369 14,233 12,305 14,831

(34%) (30%) (36%)

Table A.8: Extended Kaya components by quintile of PM2.5 emissions

PM2.5(mg) Dist. (km) Modal share (%) Emission Intensity (mg/km)

Metro Bus
Two-

Wheeler Car Metro Bus
Two-

Wheeler Car

EPM2.5,Qk DQk Smet,Qk Sbus,Qk Stw,Qk Scar,Qk Imet,Qk Ibus,Qk Itw,Qk Icar,Qk

Q1 1.3 3.0 0.007 0.044 0.000 0.006 7 5 21.1 29.1

Q2 125 12.7 0.376 0.240 0.006 0.174 7 5 23.9 33.6

Q3 501 27.3 0.450 0.066 0.018 0.371 7 5 24.9 38.8

Q4 1,325 39.9 0.256 0.027 0.033 0.633 7 5 32.1 47.8

Q5 4,208 66.5 0.055 0.006 0.019 0.900 7 5 42.9 68.9
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Table A.9: LMDI decomposition on PM2.5 emissions at the individual level

PM2.5 (mg) Diff vs Q3 (mg)
Distance

component(mg)
Modal share

component(mg)
Emission intensity
component(mg)

EPM2.5,Qk ∆EPM2.5,Q3,Qk,tot ∆EPM2.5,Q3,Qk,D ∆EPM2.5,Q3,Qk,S ∆EPM2.5,Q3,Qk,I

Q1 1.3 -500 -170 -313 -17

(34%) (63%) (3%)

Q2 125 -377 -203 -146 -28

(54%) (39%) (7%)

Q3 501 0 - - -

- - -

Q4 1,325 823 316 351 157

(38%) (43%) (19%)

Q5 4,208 3,707 1,487 1,291 928

(40%) (35%) (25%)

Table A.10: Extended Kaya components by quintile of CO2 emissions

CO2 (g) Dist. (km) Modal share (%) Emission Intensity (g/km)

Bus
Two-

Wheeler Car Bus
Two-

Wheeler Car

ECO2,Qk DQk Sbus,Qk Stw,Qk Scar,Qk ICO2,bus,Qk ICO2,tw,Qk ICO2,car,Qk

Q1 1.2 15.9 0.000 0.000 0.000 NA* NA* NA*

Q2 646.0 23.4 0.107 0.009 0.206 117 74.6 130.8

Q3 1,348 24.0 0.180 0.021 0.382 117 82.2 142.7

Q4 3,005 27.6 0.096 0.0033 0.708 117 94.0 149.1

Q5 9,810 67.2 0.023 0.019 0.908 117 104.9 158.6

*The modal share of these two modes is zero. In practice in the calculation of the LMDI, the same emission
intensity of cars and two-wheelers as for Q3 has been imputed to Q1, such that these sub-components of
modal share receive a 0 contribution to the difference compared to Q3.
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Table A.11: LMDI decomposition CO2 emissions at the individual level

CO2 (g) Diff vs Q3 (g)
Distance

component(g)
Modal share

component(g)
Emission intensity

component(g)

ECO2,Qk ∆ECO2,Qk−Q3,tot ∆ECO2,Qk−Q3,D ∆ECO2,Qk−Q3,S ∆ECO2,Qk−Q3,I

Q1 0 -1,985 -14 -1,582 -

(4%) (96%) (0%)

Q2 646.0 -914 -33 -798 -84

(4%) (87%) (9%)

Q3 1,348 0 - - -

- - -

Q4 3,005 1,463 351 1,016 96

(24%) (69%) (7%)

Q5 9,810 8,134 4,711 2,963 460

(58%) (36%) (6%)
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Table A.12: Average marginal effects for being a top 20% emitter - all individuals

(1) (2) (3)

NOx PM2.5 CO2

Inner Paris -0.0759∗∗∗ -0.0693∗∗∗ -0.0816∗∗∗

(0.0125) (0.0122) (0.0121)

Outer suburbs 0.105∗∗∗ 0.111∗∗∗ 0.112∗∗∗

(0.00594) (0.00590) (0.00588)

Rail public transport stop within 1 km -0.0769∗∗∗ -0.0810∗∗∗ -0.0777∗∗∗

(0.00562) (0.00558) (0.00555)

Motorized vehicle at hand 0.256∗∗∗ 0.265∗∗∗ 0.258∗∗∗

(0.00847) (0.00866) (0.00865)

Female -0.0820∗∗∗ -0.0839∗∗∗ -0.0770∗∗∗

(0.00475) (0.00471) (0.00475)

Household size 0.00477∗ 0.00536∗ 0.00191

(0.00214) (0.00215) (0.00211)

Low-income -0.00113 -0.00267 -0.0137

(0.00827) (0.00834) (0.00820)

High-income -0.000101 0.0128 0.0277∗∗∗

(0.00708) (0.00701) (0.00694)

Pupil/Student 0.00388 -0.00231 0.0313

(0.0184) (0.0188) (0.0186)

Employed 0.0503∗∗∗ 0.0645∗∗∗ 0.0673∗∗∗

(0.0133) (0.0135) (0.0138)

Other inactive -0.0274 -0.0365 -0.0247

(0.0216) (0.0222) (0.0221)

Pensioner -0.0862∗∗∗ -0.0830∗∗∗ -0.0684∗∗∗

(0.0149) (0.0151) (0.0153)

N 23572 23572 23572

Pseudo R-squared 0.1624 0.1765 0.1708

Notes: Standard errors clustered at the household level in parentheses.∗

p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001. All specifications also include

survey-day fixed effects, variables for indicator variables for problems

with taking transport, being on leave or on sickness leave on the survey

day.
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Table A.13: Average marginal effects for being a top 20% emitter - individuals in employment

(1) (2) (3)

NOx PM2.5 CO2

Paris => Paris -0.115∗∗∗ -0.163∗∗∗ -0.162∗∗∗

(0.0293) (0.0303) (0.0308)

Paris => Suburbs 0.0915∗∗∗ 0.0765∗∗∗ 0.0942∗∗∗

(0.0229) (0.0219) (0.0216)

Suburbs => Suburbs 0.171∗∗∗ 0.130∗∗∗ 0.160∗∗∗

(0.0111) (0.0106) (0.0107)

Work in Factory 0.0442∗∗ 0.0375∗ 0.0501∗∗∗

(0.0144) (0.0147) (0.0146)

Work at individuals’ home 0.0510 0.0642 0.0529

(0.0324) (0.0335) (0.0337)

Work Other 0.0236∗ 0.0114 0.00679

(0.0111) (0.0113) (0.0113)

Rail public transport stop within 1 km -0.0975∗∗∗ -0.114∗∗∗ -0.110∗∗∗

(0.00749) (0.00756) (0.00741)

Car available 0.317∗∗∗ 0.335∗∗∗ 0.316∗∗∗

(0.0130) (0.0134) (0.0133)

Atypical working hours 0.0444∗ 0.0573∗∗ 0.0470∗

(0.0196) (0.0201) (0.0208)

Qual. Manual workers 0.0577∗∗∗ 0.0531∗∗∗ 0.0269

(0.0157) (0.0161) (0.0161)

Unqual. Manual workers 0.0271 0.0144 0.00276

(0.0220) (0.0227) (0.0228)

Office clerks -0.00427 -0.00994 -0.00793

(0.0109) (0.0110) (0.0109)

Personal Domestic Services -0.0845∗∗∗ -0.103∗∗∗ -0.0913∗∗∗

(0.0253) (0.0264) (0.0252)

Technicians 0.0388∗ 0.0386∗ 0.0496∗∗∗

(0.0151) (0.0152) (0.0149)

Craftsworkers 0.0365 0.0494 0.0418

(0.0425) (0.0427) (0.0418)

Shopkeepers 0.0564 0.0921∗∗ 0.0649∗

(0.0329) (0.0335) (0.0323)

Company Heads 0.111∗ 0.114∗∗ 0.142∗∗

(0.0450) (0.0433) (0.0451)

Self-employed white-collars 0.0235 0.0378 0.0519

(0.0341) (0.0334) (0.0333)

Managers 0.00755 0.00902 0.0124

(0.0107) (0.0108) (0.0106)

Female -0.0710∗∗∗ -0.0775∗∗∗ -0.0732∗∗∗

(0.00744) (0.00740) (0.00740)

Low-income -0.0180 -0.0187 -0.0322∗

(0.0125) (0.0128) (0.0126)

High-income -0.00521 0.00342 0.0155

(0.0101) (0.0102) (0.00987)

N 13175 13175 13175

Pseudo R-squared 0.1651 0.1688 0.1736

Notes: Standard errors clustered at the household level in parentheses.∗ p <

0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001. All specifications also include survey-day fixed

effects, variables for indicator variables for problems with taking transport,

being on leave or on sickness leave on the survey day.
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Table A.14: Estimated coefficients for distance and car use - all individuals

(1) (2) (3)

ln Dist. Uses car Uses car

Inner Paris -0.150∗∗∗ -0.245∗∗∗ -0.146∗∗∗

(0.0279) (0.0107) (0.00991)

Outer suburbs 0.330∗∗∗ 0.168∗∗∗ 0.108∗∗∗

(0.0212) (0.00658) (0.00611)

Rail public transport stop within 1 km -0.164∗∗∗ -0.161∗∗∗ -0.120∗∗∗

(0.0217) (0.00714) (0.00643)

Motorized vehicle at hand 0.388∗∗∗ 0.377∗∗∗

(0.0223) (0.00473)

Female -0.249∗∗∗ -0.0458∗∗∗ 0.00474

(0.0160) (0.00537) (0.00486)

Household size -0.00442 0.0163∗∗∗ 0.00329

(0.00684) (0.00262) (0.00226)

Low-Income -0.182∗∗∗ -0.160∗∗∗ -0.0373∗∗∗

(0.0270) (0.00896) (0.00824)

High-Income 0.169∗∗∗ 0.0524∗∗∗ -0.00734

(0.0243) (0.00863) (0.00774)

Pupil/Student 0.885∗∗∗ -0.115∗∗∗ -0.00986

(0.0540) (0.0185) (0.0166)

Employed 0.621∗∗∗ 0.0948∗∗∗ 0.0301∗

(0.0476) (0.0136) (0.0122)

Other inactive -0.376∗∗∗ -0.0195 -0.00618

(0.0695) (0.0204) (0.0185)

Pensioner -0.345∗∗∗ 0.0528∗∗∗ -0.0140

(0.0524) (0.0151) (0.0136)

Constant 2.063∗∗∗

(0.0594)

N 23568 23572 23572

R-squared 0.1880

Pseudo R-squared 0.1587 0.2872

Notes: ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001. Standard errors clustered

at the household level in parentheses. Outcomes are standardized to ease

interpretability. All specifications also include survey-day fixed effects,

indicator variables for problems with taking transport, being on leave or

on sickness leave on the survey day.
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Table A.15: Regression coefficients for the emission intensity of trips made by car - all individuals

(1) (2) (3) (4) (5) (6)

NOx NOx PM2.5 PM2.5 CO2 CO2

Inner Paris 0.0354 0.00655 0.0991∗ 0.0293 0.248∗∗∗ 0.252∗∗∗

(0.0512) (0.0443) (0.0467) (0.0413) (0.0602) (0.0604)

Outer suburbs 0.0209 0.0545∗∗ 0.0677∗∗ 0.117∗∗∗ -0.0557∗∗ -0.0480∗

(0.0198) (0.0174) (0.0209) (0.0190) (0.0195) (0.0187)

Rail public transport stop within 1 km -0.0196 -0.0395∗ -0.0430∗ -0.0959∗∗∗ 0.0115 0.0164

(0.0191) (0.0178) (0.0199) (0.0185) (0.0180) (0.0174)

Female -0.168∗∗∗ -0.132∗∗∗ -0.191∗∗∗ -0.144∗∗∗ -0.0776∗∗∗ -0.0680∗∗∗

(0.0169) (0.0158) (0.0164) (0.0153) (0.0176) (0.0173)

Household size 0.0109 0.0236∗∗ 0.0261∗∗ 0.0644∗∗∗ -0.0208∗∗ -0.0260∗∗∗

(0.00980) (0.00894) (0.00889) (0.00807) (0.00741) (0.00719)

Low-income 0.0851∗∗ -0.0105 0.236∗∗∗ 0.0786∗ 0.0586∗ 0.0443

(0.0307) (0.0293) (0.0356) (0.0328) (0.0276) (0.0272)

High-income -0.0782∗∗∗ -0.0472∗ -0.0618∗∗ 0.00720 0.113∗∗∗ 0.110∗∗∗

(0.0201) (0.0184) (0.0207) (0.0194) (0.0236) (0.0231)

Pupil/Student 0.0477 0.0560 0.0449 0.121∗ 0.307∗∗∗ 0.281∗∗∗

(0.0328) (0.0377) (0.0641) (0.0588) (0.0584) (0.0587)

Employed 0.122∗∗∗ 0.102∗∗∗ 0.161∗∗ 0.148∗∗∗ 0.201∗∗∗ 0.190∗∗∗

(0.0251) (0.0243) (0.0490) (0.0434) (0.0435) (0.0428)

Other inactive 0.0434 0.0433 0.0978 0.0852 0.185∗ 0.199∗∗

(0.0394) (0.0414) (0.0728) (0.0660) (0.0721) (0.0720)

Pensioner -0.0746∗∗ -0.0544∗ -0.121∗ -0.0725 -0.0311 -0.0335

(0.0261) (0.0268) (0.0512) (0.0457) (0.0473) (0.0467)

HH owns Diesel Car 0.196∗∗∗ 0.725∗∗∗ -0.140∗∗∗

(0.0103) (0.0193) (0.0209)

HH owns Gasoline LCV 1.476∗∗∗ 1.004∗∗∗ 0.848∗∗∗

(0.177) (0.0989) (0.0738)

HH owns Diesel LCV 3.010∗∗∗ 2.136∗∗∗ 1.689∗∗∗

(0.449) (0.152) (0.162)

Constant -0.00259 -0.171∗∗∗ -0.0869 -0.463∗∗∗ -0.0366 -0.0221

(0.0408) (0.0400) (0.0575) (0.0522) (0.0532) (0.0529)

N 12648 12645 12648 12645 12648 12645

R-squared 0.0180 0.1434 0.0368 0.1739 0.0183 0.0656

Notes: ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001. Standard errors clustered at the household level in parentheses.

Outcomes are standardized to ease interpretability. All specifications also include survey-day fixed effects, indicator

variables for problems with taking transport, being on leave or on sickness leave on the survey day.
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Table A.16: Estimated coefficients for distance - workers

(1)

ln dist

Paris => Paris -1.022∗∗∗

(0.0410)

Paris => Suburbs -0.241∗∗∗

(0.0415)

Suburbs => Suburbs -0.435∗∗∗

(0.0253)

Work in Factory -0.0532

(0.0438)

Work at individuals’ home 0.340∗∗∗

(0.0941)

Work Other -0.149∗∗∗

(0.0345)

Rail public transport stop within 1 km -0.307∗∗∗

(0.0243)

Car available 0.320∗∗∗

(0.0270)

Car available 0.315∗∗∗

(0.0272)

Atypical working hours 0.103

(0.0556)

Qual. Manual workers 0.0677

(0.0480)

Unqual. Manual workers 0.00320

(0.0666)

Office clerks -0.0917∗∗

(0.0303)

Personal Domestic Services -0.518∗∗∗

(0.0742)

Technicians 0.204∗∗∗

(0.0431)

Craftsworkers -0.408∗

(0.199)

Shopkeepers -0.0394

(0.118)

Company Heads 0.197

(0.140)

Self-employed white-collars 0.00253

(0.0929)

Managers 0.0712∗

(0.0281)

Female -0.237∗∗∗

(0.0205)

Low-income -0.110∗∗

(0.0363)

High-income -0.00677

(0.0282)

Constant 3.642∗∗∗

(0.162)

N 13175

R-squared 0.1918

Notes: ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001.

Standard errors clustered at the household level in

parentheses. All specifications also include age, age

squared and household size, survey-day fixed effects,

indicator variables for problems with taking trans-

port, being on leave or on sickness leave on the sur-

vey day. 20



Table A.17: Estimated coefficients for car modal share - workers

(1) (2)

uses car uses car

Paris => Paris -0.217∗∗∗ -0.0998∗∗∗

(0.0183) (0.0172)

Paris => Surburbs -0.0845∗∗∗ 0.0174

(0.0189) (0.0180)

Suburbs => Suburbs 0.212∗∗∗ 0.167∗∗∗

(0.00899) (0.00835)

Work in Factory 0.105∗∗∗ 0.0795∗∗∗

(0.0179) (0.0149)

Work at individuals’ home -0.0657∗ 0.00501

(0.0312) (0.0296)

Work Other 0.0138 0.0183

(0.0122) (0.0108)

Rail public transport stop within 1 km -0.190∗∗∗ -0.138∗∗∗

(0.00877) (0.00792)

Atypical working hours 0.110∗∗∗ 0.112∗∗∗

(0.0258) (0.0232)

Qual. Manual workers 0.0105 0.0388∗

(0.0186) (0.0160)

Unqual. Manual workers -0.119∗∗∗ -0.00538

(0.0236) (0.0211)

Office clerks -0.0390∗∗∗ 0.00321

(0.0112) (0.0103)

Personal Domestic Services -0.173∗∗∗ -0.0838∗∗∗

(0.0224) (0.0214)

Technicians 0.00363 -0.000673

(0.0177) (0.0152)

Craftsworkers 0.0286 -0.00445

(0.0483) (0.0441)

Shopkeepers 0.127∗∗ 0.0953∗∗

(0.0469) (0.0362)

Company Heads 0.139 0.0764

(0.0719) (0.0525)

Self-employed white-collars 0.0814∗ 0.0698∗

(0.0378) (0.0322)

Managers -0.0208 -0.0161

(0.0112) (0.0103)

Female -0.0102 0.0257∗∗∗

(0.00793) (0.00697)

Low-income -0.150∗∗∗ -0.0443∗∗∗

(0.0124) (0.0113)

High-income 0.0280∗ -0.0103

(0.0112) (0.0102)

Car available 0.391∗∗∗

(0.00660)

N 13175 13175

Pseudo R-squared 0.1708 0.3079

Notes: ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001. Standard

errors clustered at the household level in parentheses. All

specifications also include age, age squared and household

size, survey-day fixed effects, indicator variables for prob-

lems with taking transport, being on leave or on sickness

leave on the survey day.
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Table A.18: Regression coefficients for the emission intensity of trips made by car - workers

(1) (2) (3) (4) (5) (6)

NOx NOx PM2.5 PM2.5 CO2 CO2

Paris => Paris 0.174 0.0924 0.210∗ 0.110 0.409∗∗ 0.381∗∗

(0.128) (0.0933) (0.0917) (0.0830) (0.135) (0.135)

Paris => Suburbs -0.0290 -0.0428 0.0742 -0.0170 0.106 0.133

(0.0361) (0.0383) (0.0698) (0.0621) (0.0876) (0.0853)

Suburbs => Suburbs 0.0268 0.0487∗ 0.0727∗ 0.0992∗∗∗ -0.0606 -0.0513

(0.0239) (0.0220) (0.0307) (0.0281) (0.0335) (0.0323)

Work in Factory 0.0367 0.0313 0.0659 0.0595 0.0326 0.0271

(0.0494) (0.0458) (0.0501) (0.0474) (0.0434) (0.0416)

Work at individuals’ home 0.676∗ 0.568∗ 0.434∗ 0.368∗ 0.227 0.141

(0.279) (0.283) (0.182) (0.186) (0.127) (0.131)

Work Other 0.00632 -0.0263 0.0698 0.0504 0.0000542 -0.0271

(0.0287) (0.0275) (0.0356) (0.0339) (0.0335) (0.0326)

Rail public transport stop within 1 km -0.00391 -0.0327 -0.0417 -0.106∗∗∗ 0.0180 0.0213

(0.0216) (0.0197) (0.0235) (0.0220) (0.0222) (0.0213)

Atypical working hours -0.0236 -0.00601 0.0286 0.0144 0.130∗∗ 0.154∗∗∗

(0.0533) (0.0417) (0.0654) (0.0592) (0.0488) (0.0455)

Qual. Manual workers 0.152∗∗ 0.112∗ 0.266∗∗∗ 0.213∗∗∗ 0.149∗∗ 0.129∗∗

(0.0474) (0.0458) (0.0561) (0.0544) (0.0498) (0.0478)

Unqual. Manual workers 0.0817 0.0473 0.111 0.0661 0.112 0.0982

(0.0659) (0.0536) (0.0781) (0.0713) (0.0663) (0.0623)

Office clerks 0.0289 0.0329 0.0336 0.0201 0.0272 0.0346

(0.0232) (0.0219) (0.0308) (0.0283) (0.0298) (0.0290)

Personal Domestic Services -0.0823 -0.0574 -0.163∗ -0.188∗∗ -0.0562 -0.0199

(0.0512) (0.0519) (0.0661) (0.0602) (0.0705) (0.0710)

Technicians 0.0448 0.0177 0.0701 0.0431 0.0442 0.0284

(0.0356) (0.0338) (0.0461) (0.0425) (0.0446) (0.0427)

Craftsworkers 1.546∗∗ 1.395∗∗ 0.903∗∗ 0.824∗∗ 0.544∗∗ 0.427∗

(0.531) (0.526) (0.293) (0.297) (0.209) (0.195)

Shopkeepers 0.577∗ 0.355 0.450∗∗ 0.299∗ 0.276∗ 0.124

(0.234) (0.198) (0.149) (0.139) (0.124) (0.119)

Company Heads 0.0900 0.136 -0.0947 -0.00161 0.450∗ 0.449∗

(0.136) (0.138) (0.111) (0.111) (0.189) (0.187)

Self-employed white-collars -0.101∗ -0.0509 -0.209∗∗ -0.159∗ -0.0191 0.00421

(0.0457) (0.0422) (0.0754) (0.0677) (0.113) (0.113)

Managers -0.0242 -0.0161 -0.0110 -0.00561 0.0503 0.0525

(0.0191) (0.0183) (0.0282) (0.0261) (0.0316) (0.0310)

Female -0.0630∗∗∗ -0.0553∗∗∗ -0.114∗∗∗ -0.0854∗∗∗ -0.0706∗∗ -0.0779∗∗∗

(0.0169) (0.0155) (0.0220) (0.0205) (0.0241) (0.0236)

Low-income 0.0260 -0.0595 0.179∗∗∗ 0.0342 0.0470 0.0325

(0.0393) (0.0394) (0.0462) (0.0427) (0.0368) (0.0360)

High-income -0.0568∗ -0.0362 -0.0476 -0.00494 0.0688∗ 0.0683∗

(0.0220) (0.0203) (0.0267) (0.0252) (0.0323) (0.0315)

HH owns Diesel Car 0.181∗∗∗ 0.683∗∗∗ -0.131∗∗∗

(0.0112) (0.0231) (0.0261)

HH owns Gasoline LCV 1.256∗∗∗ 0.914∗∗∗ 0.924∗∗∗

(0.225) (0.130) (0.102)

HH owns Diesel LCV 2.876∗∗∗ 1.956∗∗∗ 1.736∗∗∗

(0.557) (0.157) (0.206)

Constant -0.0891 -0.0775 -0.0388 -0.111 0.0593 0.110

(0.149) (0.144) (0.170) (0.160) (0.158) (0.154)

N 7678 7677 7678 7677 7678 7677

R-squared 0.0540 0.1752 0.0502 0.1713 0.0418 0.0910

Notes: ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001. Standard errors clustered at the household level in parentheses.

Outcomes are standardized to ease interpretability. All specifications also include age, age squared and household size,

survey-day fixed effects, indicator variables for problems with taking transport, being on leave or on sickness leave on

the survey day.
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Figure A.5: Regression coefficients of the top emitter, distance, car use and cars’ emission intensity regres-
sions, regressions with one single covariate of interest, all individuals sample

Notes: from left to right: selected x covariates are listed on the left, by category. Each row represents a
different regression output. Omitted categories for categorical variables: Location: inner suburbs; Gender:
male; Employment status: unemployed. All the regression models include survey-day fixed effects and
control variables for problems with taking transport, being on leave or on sickness leave on the survey day.
Standard errors are clustered at the household level. The first panel shows the average marginal effect of
each characteristic on the likelihood to be among the top 20% of NOx (in light blue), PM2.5 (dark blue) and
CO2 (red) emitters, expressed in percentage points. The second panel shows the percent change in the total
daily distance travelled associated with each characteristic, in %. We have transformed the β coefficients
from the log-linear model to be able to interpret them as percent changes, knowing that a 1-unit change in

x corresponds to an increase in distance by (eβ̂ − 1) ∗ 100. The third panel shows the average marginal effect
of each characteristic on the likelihood to use the car at least once during the day, expressed in percentage
points. The fourth panel shows the change in the NOx (in light blue), PM2.5 (dark blue) and CO2 (red)
emission intensity of the car trips made by the individual, expressed in standard deviation units, associated
with each characteristic. Regressions are unweighted.
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Figure A.6: Regression coefficients of the top emitter, distance, car use and cars’ emission intensity regres-
sions, regressions with one single covariate of interest, individuals in employment sample

Notes: from left to right: selected x covariates are listed on the left, by category. Each row represents a
different regression output. Omitted categories for the categorical variables: Commute type: Suburbs =>
Paris; Workplace type: Work in office; Occupation: Intermediate professions; Gender: male. All the regres-
sion models also include survey-day fixed effects and control variables for problems with taking transport,
being on leave or on sickness leave on the survey day, which coefficients are not included. Standard errors
are clustered at the household level. The first panel shows the average marginal effect of each characteristic
on the likelihood to be among the top 20% of NOx (in light blue), PM2.5 (dark blue) and CO2 (red) emit-
ters, expressed in percentage points. The second panel shows the percent change in the total daily distance
travelled associated with each characteristic, in %. The estimated coefficients from a log-linear model are

that a 1-unit change in X corresponds to an increase in Y by (eβ̂ − 1) ∗ 100, so we have transformed the
obtained coefficients to be able to interpret them as percent changes. The third panel shows the average
marginal effect of each characteristic on the likelihood to use the car at least once during the day, expressed
in percentage points. The fourth panel shows the change in the NOx (in light blue), PM2.5 (dark blue) and
CO2 (red) emission intensity of the car trips made by the individual, expressed in standard deviation units,
associated with each characteristic. Regressions are unweighted.
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